. A G ] 3 0 Ju n 20 08 ALGORITHM FOR COMPUTING LOCAL BERNSTEIN - SATO IDEALS

نویسنده

  • TOSHINORI OAKU
چکیده

Given p polynomials of n variables over a field k of characteristic 0 and a point a ∈ k, we propose an algorithm computing the local Bernstein-Sato ideal at a. Moreover with the same algorithm we compute a constructible stratification of k such that the local Bernstein-Sato ideal is constant along each stratum. Finally, we present non-trivial examples computed with our algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Bernstein-Sato ideals: Algorithm and examples

Let k be a field of characteristic 0. Given a polynomial mapping f = (f1, . . . , fp) from kn to kp, the local Bernstein–Sato ideal of f at a point a ∈ kn is defined as an ideal of the ring of polynomials in s = (s1, . . . , sp). We propose an algorithm for computing local Bernstein–Sato ideals by combining Gröbner bases in rings of differential operators with primary decomposition in a polynom...

متن کامل

ar X iv : m at h / 03 05 11 8 v 4 [ m at h . A G ] 1 5 Ju n 20 03 MULTIPLIER IDEALS , V - FILTRATION , AND SPECTRUM

For an effective divisor on a smooth algebraic variety or a complex manifold, we show that the associated multiplier ideals coincide with the filtration induced by the filtration V constructed by B. Malgrange and M. Kashiwara. This implies another proof of a theorem of L. Ein, R. Lazarsfeld, K.E. Smith and D. Varolin that any jumping coefficient in the interval (0,1] is a root of the Bernstein-...

متن کامل

Bernstein-Sato ideals, associated strati cations, and computer-algebraic aspects

Global and local Bernstein-Sato ideals, Bernstein-Sato polynomials and Bernstein-Sato polynomials of varieties are introduced, their basic properties are proven and their algorithmic determination with the method of Briançon/Maisonobe is presented. Strati cations with respect to the local variants of the introduced polynomials and ideals with the methods of Bahloul/Oaku and Levandovskyy/Martín-...

متن کامل

. A G ] 1 9 Se p 20 05 BERNSTEIN - SATO POLYNOMIALS OF ARBITRARY VARIETIES

We introduce the notion of Bernstein-Sato polynomial of an arbitrary variety (which is not necessarily reduced nor irreducible), using the theory of V -filtrations of M. Kashiwara and B. Malgrange. We prove that the decreasing filtration by multiplier ideals coincides essentially with the restriction of the V -filtration. This implies a relation between the roots of the Bernstein-Sato polynomia...

متن کامل

An Algorithm for Computing Multiplier Ideals

We give an algorithm for computing multiplier ideals using Gröbner bases in Weyl algebras. To do it, we introduce a variant of (generalized) Bernstein– Sato polynomials defined by Budur–Mustaţǎ–Saito and give an algorithm for computing it. We present several examples computed by our algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008